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Abstract

This paper is devoted to the study of water waves under the influence of the gravity
and the Coriolis force. It is quite common in the physical literature that the rotating
shallow water equations are used to study such water waves. We prove a local
wellposedness theorem for the water waves equations with vorticity and Coriolis
force, taking into account the dependence on various physical parameters and we
justify rigorously the shallow water model. We also consider a possible non constant
pressure at the surface that can be used to describe meteorological disturbances such
as storms or pressure jumps for instance.

1 Introduction

1.1 Presentation of the problem

There has been a lot of interest on the Cauchy problem for the irrotational water waves
problem since the work of S. Wu ([32] and [33]). More relevant for our present work
is the Eulerian approach developed by D. Lannes ([17]) in the presence of a bottom.
Another program initiated by W. Craig ([10]) consists in justifying the use of the many
asymptotic models that exist in the physical literature to describe the motion of water
waves. This requires a local wellposedness result that is uniform with respect to the
small parameters involved (typically, the shallow water parameter). This was achieved
by B. Alvarez-Samaniego and D. Lannes ([4]) for many regimes; other references in
this direction are ([27], [28], [16]). The irrotational framework is however not always
the relevant one when dealing with wave-current interactions or, at larger scales, if one
wants to take into account the Coriolis force. The latter configuration motivates the
present study. Several authors considered the local wellposedness theory for the water
waves equations in the presence of vorticity ([9] or [20] for instance). Recently, A. Castro
and D. Lannes proposed a generalization of the Zakharov-Craig-Sulem formulation (see
[34], [11], [12], [1] for an explanation of this formulation), and gave a system of three
equations that allow for the presence of vorticity. Then, they used it to derive new
shallow water models that describe wave current interactions and more generally the
coupling between waves and vorticity effects ([8] and [7]). In this paper, we base our
study on their formulation.
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This paper is organized in three parts : firstly we derive a generalization of the Castro-
Lannes formulation that takes into account the Coriolis forcing as well as non flat bottoms
and a non constant pressure at the surface; secondly, we prove a local wellposedness
result taking account the dependence of small parameters; Finally, we justify that the
rotational shallow water model is a good asymptotic model of the rotational water waves
equations under a Coriolis forcing.

We model the sea by an incompressible ideal fluid bounded from below by the seabed
and from above by a free surface. We suppose that the seabed and the surface are
graphs above the still water level. The pressure at the surface is of the form P + Pref

where P (t, ·) models a meteorological disturbance and Pref is a constant which represents
the pressure far from the meteorological disturbance. We denote by d the horizontal
dimension, which is equal to 1 or 2. The horizontal variable is X ∈ Rd and z ∈ R
is the vertical variable. H is the typical water depth. The water occupies the domain
Ωt := {(X, z) ∈ Rd+1 , −H+b(X) < z < ζ(t,X)}. The water is homogeneous (constant
density ρ), inviscid with no surface tension. We denote by U the velocity of the fluid,
V is the horizontal component of the velocity and w its vertical component. The water
is under the influence of the gravity g = −gez and the rotation of the Earth with a
rotation vector f = f

2ez. We assume that we are under the f-plane approximation which
means that f is set to a constant value. Finally, we define the pressure in the fluid
domain by P. The equations governing the motion of the surface of an ideal fluid under
the influence of gravity and Coriolis force are the free surface Euler Coriolis equations
(1)  ∂tU + (U · ∇X,z) U + 2f×U = −1

ρ
∇X,zP − gez in Ωt,

div U = 0 in Ωt,

(1)

with the boundary conditions {
∂tζ −U ·N = 0,

Ub ·Nb = 0,
(2)

where N =

(
−∇ζ

1

)
, Nb =

(
−∇b

1

)
, U =

(
V
w

)
= U|z=ζ and Ub =

(
Vb

wb

)
= U|z=−H+b.

The pressure P can be decomposed as the surface contribution and the internal pressure

P(t,X, z) = P (t,X) + Pref + P̃(t,X, z),

with P̃|z=ζ = 0.

Remark 1.1. In this paper, we identify functions on R2 as function on R3. Then, the
gradient, the curl and the divergence operators become in the two dimensional case

1We consider that the centrifugal potential is constant and included in the pressure term.
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∇X,zf =

∂xf0
∂zf

 , curl A =

 −∂zA2

∂zA1 − ∂xA3

−∂xA2

 , div A = ∂xA1 + ∂zA3.

In order to obtain some asymptotic models we nondimensionalize the previous equations.
There are five important physical parameters : the typical amplitude of the surface
a, the typical amplitude of the bathymetry abott, the typical horizontal scale L, the
characteristic water depthH and the typical Coriolis frequency f . Then we can introduce
four dimensionless parameters

ε =
a

H
, β =

abott

H
, µ =

H2

L2
and Ro =

a

fL

√
g

H
, (3)

where ε is called the nonlinearity parameter, β the bathymetric parameter, µ the shal-
lowness parameter and Ro the Rossby number. We also nondimensionalize the variables
and the unknowns. We introduce (see [19] and [23] for instance for an explanation of
this nondimensionalization)

X ′ =
X

L
, z′ =

z

H
, ζ ′ =

ζ

a
, b′ =

b

abott
, t′ =

√
gH

L
t,

V′ =

√
H

g

V

a
, w′ = H

√
H

g

w

aL
, P ′ =

P

ρga
and P̃ ′ = P̃

ρgH
.

(4)

In this paper, we use the following notations

∇µX′,z′ =

(√
µ∇X′
∂z′

)
, curlµ = ∇µX′,z′ × , divµ = ∇µX′,z′ · . (5)

We also define

Uµ =

(√
µV′

w′

)
, ω′ =

1

µ
curlµUµ, Uµ = Uµ

|z′=εζ′ , Uµ
b = Uµ

|z′=−1+βb′ , (6)

and

Nµ =

(
−ε√µ∇ζ ′

1

)
, Nµ

b =

(
−β√µ∇b′

1

)
. (7)

Notice that our nondimensionalization of the vorticity allows us to consider only weakly
sheared flows (see [7], [30], [26]). The nondimensionalized fluid domain is

Ω′t′ := {(X ′, z′) ∈ Rd+1 , − 1 + βb′(X ′) < z′ < εζ ′(t′, X ′)}. (8)

Finally, if V =

(
V1

V2

)
∈ R2, we define V by V⊥ =

(
−V2

V1

)
. Then, the Euler Coriolis

equations (1) become
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 ∂t′U
µ +

ε

µ

(
Uµ · ∇µX′,z′

)
Uµ +

ε
√
µ

Ro

(
V′⊥

0

)
= −√µ

(
∇P ′

0

)
− 1

ε
∇µX′,z′P̃

′ − 1

ε
ez in Ω′t,

divµX′,z′ Uµ = 0 in Ω′t,

(9)

with the boundary conditions  ∂t′ζ
′ − 1

µ
Uµ ·Nµ = 0,

Uµ
b ·N

µ
b = 0.

(10)

In the following we omit the primes. In [8], A. Castro and D. Lannes derived a formu-
lation of the water waves equations with vorticity. We outline the main ideas of this
formulation and extend it to take into account the Coriolis force; even in absence of
Coriolis forcing, our results extend the result of [8] by allowing non flat bottoms. First,
applying the curlµ operator to the first equation of (9) we obtain an equation on ω

∂tω +
ε

µ

(
Uµ · ∇µX,z

)
ω =

ε

µ
ω · ∇µX,zU

µ +
ε

µRo
∂zU

µ. (11)

Furthermore, taking the trace at the surface of the first equation of (9) we get

∂tU
µ + ε (V · ∇X) Uµ +

ε
√
µ

Ro

(
V⊥

0

)
= −√µ

(
∇P
0

)
− 1

ε

(
0
1

)
− 1

ε

(
∂zP̃

)
|z=εζ

Nµ. (12)

Then, in order to eliminate the term (∂zP)|z=εζ N
µ, we have to introduce the following

quantity. If A is a vector field on Ωt, we define A� as

A� =
1
√
µ

Ah + εAv∇ζ,

where Ah is the horizontal component of A, Av its vertical component, A = A|z=εζ and
Ab = A|z=−1+βb. Notice that,

A×Nµ =
√
µ

(
−A⊥�

−ε√µA⊥� · ∇ζ

)
. (13)

Therefore, taking the orthogonal of the horizontal component of the vectorial product
of (12) with Nµ we obtain

∂tU
µ
� +∇ζ+

ε

2
∇
∣∣∣Uµ

�

∣∣∣2− ε

2µ
∇
[(

1 + ε2µ |∇ζ|2
)

w2
]
+ε

(
ω ·Nµ +

1

Ro

)
V⊥ = −∇P. (14)

Since Uµ
� is a vector field on R2, we have the classical Hodge-Weyl decomposition

Uµ
� = ∇∇

∆
·Uµ

� +∇⊥∇
⊥

∆
·Uµ

� . (15)
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In the following we denote by ψ := ∇
∆ ·U

µ
� and ψ̃ := ∇⊥

∆ ·U
µ
�

(2). Applying the operator
∇
∆ · to (14), we obtain

∂tψ + ζ +
ε

2

∣∣∣Uµ
�

∣∣∣2 − ε

2µ

(
1 + ε2µ |∇ζ|2

)
w2 + ε

∇
∆
·
[(
ω ·Nµ +

1

Ro

)
V⊥
]

= −P. (16)

Moreover, using the following vectorial identity(
∇µX,z ×Uµ

)
|z=εζ

·Nµ = µ∇⊥ ·Uµ
� , (17)

we have

∆ψ̃ = (ω ·Nµ) . (18)

We can now give the nondimensionalized Castro-Lannes formulation of the water waves
equations with vorticity in the presence of Coriolis forcing. It is a system of three
equations for the unknowns (ζ, ψ,ω)

∂tζ −
1

µ
Uµ ·Nµ = 0,

∂tψ+ζ+
ε

2

∣∣∣Uµ
�

∣∣∣2− ε

2µ

(
1 +ε2µ |∇ζ|2

)
w2+ε

∇
∆
·
[(
ω ·Nµ +

1

Ro

)
V⊥
]

= −P,

∂tω+
ε

µ

(
Uµ ·∇µX,z

)
ω=

ε

µ

(
ω · ∇µX,z

)
Uµ+

ε

µRo
∂zU

µ,

(19)

where Uµ := Uµ[εζ, βb](ψ,ω) is the unique solution in H1(Ωt) of

curlµ Uµ = µω in Ωt,

divµ Uµ = 0 in Ωt,

Uµ
� = ∇ψ +

∇⊥

∆
(ω ·Nµ) ,

Uµ
b ·N

µ
b = 0.

(20)

We add a technical assumption. We assume that the water depth is bounded from below
by a positive constant

∃hmin > 0 , εζ + 1− βb ≥ hmin. (21)

We also suppose that the dimensionless parameters satisfy

∃µmax, 0 < µ ≤ µmax, 0 < ε ≤ 1, 0 < β ≤ 1 and
ε

Ro
≤ 1. (22)

Remark 1.2. The assumption ε ≤ Ro is equivalent to fL ≤
√
gH. This means that

the typical rotation speed due to the Coriolis force is less than the typical water wave
celerity. For water waves, this assumption is common (see for instance [25]). Typically
for offshore long water waves at mid-latitudes, we have L = 100km and H = 1km and
f = 10−4Hz. Then, ε

Ro = 10−1.
2We define rigorously these operators in the next section.
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1.2 Notations

- If A ∈ R3, we denote by Ah its horizontal component and by Av its vertical component.

- If V =

(
V1

V2

)
∈ R2, we define the orthogonal of V by V⊥ =

(
−V2

V1

)
.

- In this paper, C (·) is a nondecreasing and positive function whose exact value has no
importance.

- Consider a vector field A or a function w defined on Ω. Then, we denote A = A ◦ Σ
and w = w◦Σ, where Σ is defined in (39). Furthermore, we denote A = A|z=εζ = A|z=0,
w = w|z=εζ = w|z=0 and Ab = A|z=−1+βb = A|z=−1, wb = w|z=−1+b = w|z=−1.

- If s ∈ R and f is a function on Rd, |f |Hs is its Hs-norm and |f |2 is its L2-norm. The
quantity |f |Wk,∞ is W k,∞(Rd)-norm of f , where k ∈ N∗, and |f |L∞ its L∞(Rd)-norm.

- The operator ( , ) is the L2-scalar product in Rd.

- If N ∈ N∗, A is defined on Ω and A = A ◦Σ, ||A||HN and ||A||HN are respectively the
HN (S)-norm of A and the HN (Ω)-norm of A. The Lp-norm are denoted ||·||p.

- The norm ||·||Hs,k is defined in Definition 2.10.

- The space Hs
∗(Rd), Ḣs(Rd) and Hb(divµ0 ,Ω) are defined in Subsection 2.1.

- If f is a function defined on Rd, we denote ∇f the gradient of f .

- If w is a function defined on Ω, ∇X,zw is the gradient of w and ∇Xw its horizontal
component. We have the same definition for functions defined on S.

- The operators |D|, P and Λ are Fourier multipliers in S ′
(
Rd
)

defined by

|̂D|u(ξ) = |ξ| û(ξ) , P =
|D|√

1 +
√
µ |D|

and Λ =

√
1 + |D|2.

- In the following MN is a constant of the form

MN = C

(
µmax,

1

hmin
, ε |ζ|HN , β |∇b|HN , β |b|L∞

)
. (23)

1.3 Existence result for the water waves equations

The main result of this article is Theorem 3.6. It is a wellposedness result for the system
(45) which is a straightened system of the Castro-Lannes formulation (19). This result
extends Theorem 4.7 and Theorem 5.1 in [8] by adding a non flat bottom and a Coriolis
forcing. From Theorem 3.6, we get the following wellposedness result for System (19).

Theorem 1.3. Assume that N is an integer large enough, that the initial data, b and
P are smooth enough and that the initial vorticity is divergence free. Assume also that
Conditions (21) and (53) are satisfied initially. Then, there exists T > 0, and a unique
solution to the water waves equations (19) on [0, T ]. Moreover,
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T = min

(
T0

max(ε, β, ε
Ro)

,
T0

|∇P |L∞t HN
X

)
with

1

T0
= c1,

sup
t∈[0,T ]

|ζ(t)|HN + |Pψ(t)|
HN− 1

2
+ ||ω(t)||HN−1(Ωt)

= c2,

where cj is are constants which depend on the initial conditions, P and b.

This theorem allows us to investigate the justification of asymptotic models in the pres-
ence of a Coriolis forcing. In the case of a constant pressure at the surface and without
a Coriolis forcing, our existence time is similar to Theorem 3.16 in [19] (see also [4]);
without a Coriolis forcing, it is as Theorem 2.3 in [23]. Notice finally that Condition (53)
corresponds to the Rayleigh-Taylor criterion (see for instance [19]). Ebin ([15]) showed
that if this condition is not satisfied, the water waves equations are illposed.

2 The div-curl problem

In [8], A. Castro and D. Lannes study the system (20) in the case of a flat bottom
(b = 0). The purpose of this part is to extend their results in the case of a non flat
bottom.

2.1 Functional Analysis framework

In this paper, we use the Beppo-Levi spaces (see [14])

∀s ≥ 0, Ḣs(Rd) =
{
f ∈ L2

loc(Rd), ∇f ∈ Hs−1(Rd)
}

and |·|Ḣs = |∇·|Hs−1 .

The dual space of Ḣs(Rd)/R is the space (see [6])

H−s∗ (Rd) =
{
u ∈ H−s(Rd), ∃v ∈ H−s+1(Rd), u = |D| v

}
and |·|H−s∗ =

∣∣∣∣ ·|D|
∣∣∣∣
H−s+1

.

Notice that Ḣ1(Rd)/R is a Hilbert space. Then, we can rigorously define the Hodge-Weyl

decomposition and the operators ∇∆ · and ∇
⊥

∆ ·. For f ∈ L2(Rd)d, u = ∇
∆ · f is defined as

the unique solution, up to a constant, in Ḣ1(Rd) of the variational problem∫
Rd
∇u · ∇φ =

∫
Rd
f · ∇φ , ∀φ ∈ Ḣ1(Rd).

The operator ∇
⊥

∆ · can be defined similarly. Then, it is easy to check that the operators
∇⊥
∆ · and ∇

⊥

∆ · belong to L
(
Hs(Rd)d, Ḣs+1(Rd)

)
, for all s ≥ 0.
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Let Ω be a domain in Rd+1 with a Lipschitz boundary. The subspace of L2(Ω)3 of
functions whose curl is in L2(Ω)3 is the space

H (curlµ,Ω) =
{
A ∈ L2(Ω)3, curlµA ∈ L2(Ω)3

}
.

The subspace of L2(Ω)3 of divergence free vector fields is the space

H (divµ0 ,Ω) =
{
A ∈ L2(Ω)3, divµA = 0

}
.

Remark 2.1. Notice that A ∈ H (divµ0 ,Ω) implies that
(
A|∂Ω · n

)
belongs to H−

1
2 (∂Ω)

and A ∈ H (curlµ,Ω) implies that
(
A|∂Ω × n

)
belongs to H−

1
2 (∂Ω) (see [13]).

Finally, we define Hb(divµ0 ,Ω) as

Hb(divµ0 ,Ω) =

{
A ∈ H (divµ0 ,Ω) , Ab ·Nµ

b ∈ H
− 1

2
∗ (Rd)

}
.

Remark 2.2. We have a similar equation to (17) at the bottom

1

µ

(
∇µX,z ×Uµ

)
|z=−1+βb

·Nµ
b = ∇⊥ · (Vb + βwb∇b) ,

hence, in the following, we suppose that ω ∈ Hb(divµ0 ,Ω) .

It is important to notice that, if ω ∈ Hb(divµ0 ,Ω), the quantity 1
P

(
ωb ·Nµ

b

)
makes sense

and belongs to L2
(
Rd
)
.

2.2 Existence and uniqueness for the div-curl problem

In this part, we forget the dependence on t. First, notice that we can split the problem
into two parts. Let Φ ∈ Ḣ2(Ω) the unique solution of the Laplace problem (see [19])

∆µ
X,zΦ = 0 in Ω,

Φ|z=εζ = ψ,
(
Nµ
b ·∇

µ
X,zΦ

)
|z=−1+βb

= 0.
(24)

Using the vectorial identity (
∇µX,zΦ

)
�

= ∇ψ,

it is easy to check that if Uµ satisfies (20), Ũ
µ

:= Uµ −∇µX,zΦ satisfies

curlµ Ũ
µ

= µ ω in Ωt,

divµ Ũ
µ

= 0 in Ωt,

Ũ
µ

� =
∇⊥

∆
(ω ·Nµ) at the surface,

Ũ
µ

b ·N
µ
b = 0 at the bottom.

(25)
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In the following we focus on the system (25). We give 4 intermediate results in order to
get the existence and uniqueness. The first Proposition shows how to control the norm
of the gradient of a function with boundary condition as in (25).

Proposition 2.3. Let ζ, b ∈ W 2,∞(Rd), A ∈ H(divµ0 ,Ω) ∩ H(curlµ,Ω). Then, for all
C ∈ H1(Rd)3, we have

∫
Ω
∇µX,zA :∇µX,zC =

∫
Ω
curl µA : curl µC+〈lµ[εζ](A),C〉

H−
1
2−H

1
2
−〈lµ[βb](Ab),Cb〉

H−
1
2−H

1
2
,

(26)

where for B ∈ H
1
2

(
R2
)3

and for η ∈W 2,∞(Rd),

lµ[η](B) =

(√
µ∇Bv − µ

(
∇⊥η · ∇

)
B⊥h

−√µ∇ · Bh

)
. (27)

Furthermore, if ψ̃ ∈ Ḣ
3
2 (Rd) and

Ab ·Nµ
b = 0 and A� = ∇⊥ψ̃,

we have the following estimate

∣∣∣∣∣∣∇µX,zA∣∣∣∣∣∣2
2
≤||curl µA||22 + µC (ε |ζ|W 2,∞, β |b|W 2,∞)

(
|A|22 + |Abh|22

)
+ µC (µmax, ε |ζ|W 2,∞, β |b|W 2,∞)

∣∣∣∣√1 +
√
µ|D|∇ψ̃

∣∣∣∣
2

∣∣∣∣√1 +
√
µ |D|Ah

∣∣∣∣
2

.

(28)

Proof. Using the Einstein summation convention and denoting ∇µX,z = (∂µ1 , ∂
µ
2 , ∂

µ
3 )
T

, a
simple computation gives (see Lemma 3.2 in [8] or Chapter 9 in [13]),

||∇µA||22 = ||curlµA||22 + ||divµA||22 +

∫
∂Ω
nµi Aj∂

µ
j Ai − nµjAj∂

µ
i Ai. (29)

In this case, ∂Ω is the union of two surfaces and
→
nµ = ±

(
−√µ∇η

1

)
, where η is the

corresponding surface. Then, one can check that (see also Lemma 3.8 in [8]),

∫
{z=η}
nµi Aj∂

µ
j Ai − nµjAj∂

µ
i Ai=±

∫
Rd

Aη,h ·
(

2
√
µ∇Aη,v − µ

(
∇η⊥ · ∇

)
A⊥η,h

)
, (30)

where Aη := A|z=η. The first part of the Proposition follows by polarization of Equations
(29) and (30) (as quadratic forms). For the second estimate, since Ab ·Nµ

b = 0, we get
at the bottom that
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∫
{z=−1+βb}
nµi Aj∂

µ
j Ai−nµjAj∂

µ
i Ai=−2

∫
Rd

µβ
(
∂xbAbx∂yAby+∂ybAby∂xAbx+∂2xybAbxAby

)
−Az

√
µdivXAbh

= −µβ
∫
Rd

∂2xbA2
bx + ∂2ybA2

by + 2∂2xybAbxAby.

At the surface, since Ah =
√
µ∇⊥ψ̃ − ε√µAv∇ζ, we have

∫
{z=εζ}
nµi Aj∂

µ
j Ai − nµjAj∂

µ
i Ai=−2

∫
Rd

εµ
(
∂xζAy∂yAx+∂yζAx∂xAy+∂

2
xyζAxAy

)
+
√
µ (Ah·∇X) Az

= εµ

∫
Rd

A2
x∂

2
yζ + A2

y∂
2
xζ − 2AxAy∂

2
xyζ + A2

z

[
∂2xζ + ∂2yζ

]
− 2εµ

3
2

∫
Rd

Ah · ∇⊥
(
∇ψ̃ · ∇ζ

)
.

Then,

∣∣∣∣2εµ 3
2

∫
Rd

Ah · ∇⊥
(
∇ψ̃ · ∇ζ

)∣∣∣∣ ≤ εµ ∣∣∣∣√1 +
√
µ|D| Ah

∣∣∣∣
2

∣∣∣√µP(∇ψ̃ · ∇ζ)∣∣∣
2
.

and estimate (28) follows easily from Lemma A.1.

The second Proposition gives a control of the L2-norm of the trace.

Proposition 2.4. Let ζ, b ∈W 1,∞(Rd), A ∈ H(divµ0 ,Ω)∩H(curlµ,Ω) and ψ̃ ∈ Ḣ1
(
Rd
)

such that

Ab ·Nµ
b = 0 and A� = ∇⊥ψ̃.

Then,

|A|22 + |Ab|22 ≤
(
µ
∣∣∣∇ψ̃∣∣∣2

2
+ ||curl µA||2 ||A||2

)
C. (31)

Proof. Using the fact that ∂zAh = − (curl µA)⊥h +
√
µ∇XAv, we have

∫
Rd
|Ah|

2 =

∫
Rd
|Abh|2 + 2

∫
Ω
∂zAh ·Ah

=

∫
Rd
|Abh|2 − 2

∫
Ω

(curl µA)⊥h ·Ah + 2
√
µ

∫
Ω
∇XAv ·Ah

=

∫
Rd
|Abh|2−2

∫
Ω
(curl µA)⊥h ·Ah+2

∫
Ω
∂zAvAv+ 2

√
µ

(∫
Rd
β (∇b ·Abh) Abv

−
∫
Rd
(ε∇ζ ·Ah) Av

)
,

10



where the third equality is obtained by integrating by parts the third integral and by
using the fact that divµA = 0. Furthermore, thanks to the boundary conditions and
Equality (13), we have

ε
√
µ (∇ζ ·Ah) Av =

√
µ∇⊥ψ̃ ·Ah − |Ah|

2 and β
√
µ (∇b ·Abh) Abv = A2

bv.

Then, we get

|A|22 + |Ab|22 = 2
√
µ

∫
Rd
∇⊥ψ̃ ·Ah + 2

∫
Rd

(curl µA)⊥h ·Ah, (32)

and the inequality follows.

The third Proposition is a Poincaré inequality.

Proposition 2.5. Let ζ, b ∈W 1,∞(Rd) and A ∈ H(divµ0 ,Ω) ∩H(curlµ,Ω) such that

Ab ×Nµ
b = 0 and A ·Nµ = 0.

Then,

||A||2 ≤ C |εζ − βb+ 1|L∞ (||curlµA||2 + ||∂zA||2) . (33)

Proof. We have

|A(X, z)|2 = |Ab(X)|2 + 2

∫ z

s=−1+βb(X)
∂zA(X, s) ·A(X, s)dXds.

Then, the result follows from the following lemma, which is a similar computation to
the one in Proposition 2.4.

Lemma 2.6. Let ζ, b ∈W 1,∞(Rd), A ∈ H(divµ0 ,Ω) ∩H(curlµ,Ω) such that

Ab ×Nµ
b = 0 and A ·Nµ = 0.

Then,

|A|22 + |Ab|22 ≤ C ||curl µA||2 ||A||2 . (34)

Finally, the fourth Proposition links the regularity of ψ̃ to the regularity of ωb ·Nµ
b .

Proposition 2.7. Let ζ, b ∈ W 1,∞(Rd) be such that Condition (21) is satisfied and let

ω ∈ Hb(divµ0 ,Ω). Then, there exists a unique solution ψ̃ ∈ Ḣ
3
2 (Rd) to the equation

∆ψ̃ = ω ·Nµ and we have

∣∣∣∇ψ̃∣∣∣
2
≤ √µC

(
1

hmin
, ε |ζ|W 1,∞ , β |b|W 1,∞

)(
||ω||2 +

1
√
µ

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣
2

)
,

11



and

∣∣∣∣√1 +
√
µ|D|∇ψ̃

∣∣∣∣
2

≤ √µC
(

1

hmin
, ε |ζ|W 1,∞ , β |b|W 1,∞

)(
||ω||2 +

1
√
µ

∣∣∣∣ 1

P
(ωb ·Nµ

b )

∣∣∣∣
2

)
.

Proof. The proof is a small adaptation of Lemma 3.7 and Lemma 5.5 in [8].

We can now prove an existence and uniqueness result for the system (20) and (25).

Theorem 2.8. Let ζ, b ∈W 2,∞(Rd) such that Condition (21) is satisfied, ψ ∈ Ḣ
3
2

(
Rd
)

and ω ∈ Hb(divµ0 ,Ω) . There exists a unique solution Uµ = Uµ[εζ, βb](ψ,ω) ∈ H1 (Ω)
to (20). Furthermore, Uµ = ∇µX,zΦ + curlµA , where Φ satisfies (24) and A satisfies

curlµcurlµA = µ ω in Ωt,

divµA = 0 in Ωt,

Nµ
b ×Ab = 0,

Nµ ·A = 0,

(curlµA)� =
∇⊥

∆
(ω ·Nµ) ,

Nµ
b · (curl µA)|z=−1+βb = 0.

(35)

Finally, one has

||Uµ||2 ≤
√
µC

(
µmax,

1

hmin
, ε |ζ|W 2,∞ , β |b|W 2,∞

)(
√
µ ||ω||2 +

∣∣∣∣ 1

P
(ωb ·Nµ

b )

∣∣∣∣
2

+ |Pψ|2

)
,

(36)

and

∣∣∣∣∣∣∇µX,zUµ
∣∣∣∣∣∣
2
≤ µC

(
µmax,

1

hmin
, ε |ζ|W 2,∞ , β |b|W 2,∞

)(
||ω||2 +

∣∣∣∣ 1

P
(ωb ·Nµ

b )

∣∣∣∣
2

+ |Pψ|H1

)
.

(37)

Proof. The uniqueness follows easily from the last Propositions. The existence of Φ and
the control of its norm are proved in Chapter 2 in [19]. We focus on the existence of a
solution of (35). The main idea is the following variational formulation for the system
(35) (we refer to Lemma 3.5 and Proposition 5.3 in [8] for the details). We denote by

X =
{
C ∈ H1 (Ω) , divµC = 0, A ·Nµ = 0 and Ab ×Nµ

b = 0
}
,

and ψ̃ the unique solution in Ḣ1(Rd) of ∆ψ̃ = ω · Nµ. Then, A ∈ X is a variational
solution of System (35) if

∀C ∈ X ,

∫
Ω

curlµ A · curlµ C = µ

∫
Ω
ω ·C + µ

∫
Rd
∇ψ̃ · C�, (38)

12



The existence of such a A follows Lax-Milgram’s theorem. In the following we only
explain how we get the coercivity. Thanks to a similar computation that we used to
prove Estimate (28) we get∣∣∣∣∣∣∇µX,zA∣∣∣∣∣∣2

2
≤ ||curl µA||22 + µC (ε |∇ζ|W 2,∞, β |∇b|W 2,∞)

(
|A|22 + |Abh|22

)
.

Then, thanks to the similar computation that in Proposition 2.4 and Proposition 2.5 we
obtain the coercivity

||A||2 +
∣∣∣∣∣∣∇µX,zA∣∣∣∣∣∣

2
≤ C

(
µmax,

1

hmin
, ε |ζ|W 2,∞ , β |b|W 2,∞

)
||curlµA||2 .

Then, we can easily extend this for all C in
{
C ∈ H1 (Ω) , C ·Nµ = 0 and Cb ×Nµ

b = 0
}

and thanks to the variational formulation of A we get

||curlµA||2 ≤ C
(
µmax,

1

hmin
, ε |ζ|W 2,∞ , β |b|W 2,∞

)(
µ ||ω||2 +

√
µ
∣∣∣∇ψ̃∣∣∣

2

)
.

Using Proposition 2.7, we get the first estimate. The second estimate follows from the
first estimate, the inequality (28), Proposition 2.4, Proposition 2.6 and the following
Lemma.

Lemma 2.9. Let ζ, b ∈ W 1,∞(Rd) be such that Condition (21) is satisfied. Then, for
all u ∈ H1 (Ω),

∣∣∣∣√1 +
√
µ|D|u

∣∣∣∣
2

+

∣∣∣∣√1 +
√
µ|D|ub

∣∣∣∣
2

≤ C
(

1

hmin
, ε |ζ|W 1,∞ , β |b|W 1,∞

)(∣∣∣∣∣∣∇µX,zu∣∣∣∣∣∣
2

+ ||u||2
)
.

Proof. The proof is a small adaptation of Lemma 5.4 in [8].

2.3 The transformed div-curl problem

In this section, we transform the div-curl problem in the domain Ω into a variable
coefficients problem in the flat strip S = Rd× (−1, 0). We introduce the diffeomorphism
Σ,

Σ :=
S → Ω

(X, z) 7→ (X, z + σ(X, z)) ,
(39)

where

σ(X, z) := z (εζ(X)− βb(X)) + εζ(X).

In the following, we will focus on the bottom contribution and we refer to [8] for the
other terms. We keep the notations of [8]. We define

13



Uσ,µ [εζ, βb] (ψ, ω) = Uµ =

(√
µV
w

)
= Uµ ◦ Σ, ω = ω ◦ Σ,

and

∇σ,µX,z =
(
J−1

Σ

)t∇µX,z, where
(
J−1

Σ

)t
=

(
Idd×d

−√µ∇σ
1+∂zσ

0 1
1+∂zσ

)
.

Furthermore, for A = A ◦ Σ,

curlσ,µA = (curlµ A) ◦ Σ = ∇σ,µX,z ×A, divσ,µA = (divµ A) ◦ Σ = ∇σ,µX,z ·A.

Finally, if A is a vector field on S,

A = A|z=0, Ab = A|z=−1 and A� =
1
√
µ

Ah + εAv∇ζ.

Then, Uµ is the unique solution in H1(S) of

curlσ,µ Uµ = µω in S,
divσ,µ Uµ = 0 in S,

Uµ
� = ∇ψ +

∇⊥

∆
(ω ·Nµ) on {z = 0} ,

Uµ
b ·N

µ
b = 0 on {z = −1} .

(40)

We also keep the notations in [22]. If A = A ◦ Σ, we define

∂σi A = ∂iA ◦ Σ, i ∈ {t, x, y, z} , ∂σi = ∂i −
∂iσ

1 + ∂zσ
∂z, i ∈ {x, y, t} and ∂σz =

1

1 + ∂zσ
∂z.

Then, by a change of variables and Proposition 2.3 we get the following variational
formulation for Uµ. For all C ∈ H1(S),

∫
S
∇µX,zU

µ · P (Σ)∇µX,zC = µ

∫
S

(1 + ∂zσ)ω · curlσ,µC +

∫
Rd

lµ[εζ](Uµ) · C −
∫
Rd

lµ[βb](Uµ
b ) · Cb,

(41)

where P (Σ) = (1 + ∂zσ) J−1
Σ

(
J−1

Σ

)t
and

lµ[η]
(

Uµ
|z=η

)
=

(√
µ∇w|z=η − µ

3
2

(
∇⊥η · ∇

)
V⊥|z=η

−µ∇ ·V|z=η

)
.

In order to obtain higher order estimates on Uµ, we have to separate the regularity on
z and the regularity on X. We use the following spaces.
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Definition 2.10. We define the spaces Hs,k

Hs,k(S) =
⋂

0≤l≤k
H l
z

(
−1, 0 ;Hs−l

X

(
Rd
))

and |u|Hs,k =
∑

0≤l≤k

∣∣Λs−j∂jzu∣∣2 .
Furthermore, if α ∈ Nd\{0}, we define the Alinhac’s good unknown

ψ(α) = ∂αψ − εw∂αζ and ψ(0) = ψ. (42)

This quantities play an important role in the wellposedness of the water waves equations
(see [2] or [19]). In fact, more generally, if A is vector field on S, we denote by

A(α) = ∂αA− ∂ασ∂σz A , A(0) = A , A(α) = ∂αA− ε∂αζ∂σz A and A(0) = A. (43)

We can now give high order estimates on Uµ. We recall that MN is defined in (23).

Theorem 2.11. Let N ∈ N, N ≥ 5. Then, under the assumptions of Theorem 2.8, for
all 0 ≤ l ≤ 1 and 0 ≤ l ≤ k ≤ N − 1, the straightened velocity Uµ, satisfies

∣∣∣∣∣∣∇µX,zUµ
∣∣∣∣∣∣
Hk,l
≤ µMN

|Pψ|H1 +
∑

1<|α|≤k+1

∣∣Pψ(α)

∣∣
2

+ ||ω||Hk,l +

∣∣∣∣ΛkP (
ωb ·Nµ

b

)∣∣∣∣
2

 .

Proof. We start with l = 0. We follow the proof of Proposition 3.12 and Proposition 5.8
in [8]. Let k ∈ [1, N − 1], α ∈ Nd with |α| ≤ k. We take C = ∂2αUµ in (41)(3) and we
get

∫
S
∇µX,zU

µ · P (Σ)∇µX,z∂
2αUµ = µ

∫
S
(1 + ∂zσ)ω · curlσ,µ∂2αUµ +

∫
Rd
lµ[εζ](Uµ) · ∂2αUµ

−
∫
Rd
lµ[βb]

(
Uµ
b

)
· ∂2αUµ

b .

We focus on the bottom contribution, which is the last term of the previous equation.
Using the fact that wb = µβ∇b ·Vb, we have

(−1)|α|
∫
Rd

lµ[βb] (Ub) · ∂2αUb =

∫
Rd

2µ∂α∇wb · ∂αVb − µ2β∂α
[(
∇⊥b · ∇

)
V⊥b

]
· ∂αVb

=

∫
Rd

2µ2β∂α∇ (∇b ·Vb) · ∂αVb − µ2β∂α
[(
∇⊥b · ∇

)
V⊥b

]
· ∂αVb

=

∫
Rd

2µ2β (∇b)t · ∂α∇Vb · ∂αVb − βµ2
[(
∇⊥b · ∇

)
∂αV⊥b

]
· ∂αVb︸ ︷︷ ︸

I1

+

∫
Rd

2µ2β [∂α∇,∇b] Vb · ∂αVb − βµ2
[
∂α,

(
∇⊥b · ∇

)]
V⊥b · ∂αVb︸ ︷︷ ︸

I2

.

3A. Castro and D. Lannes explain why we can take such a C in the variational formulation.
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Then, a careful computation gives

|I1| =
∣∣∣∣µ2β

∫
Rd
∂2
xb (∂αVbx)2 + ∂2

yb (∂αVby)
2 + 2µ2β

∫
Rd
∂2
xyb ∂

αVbx ∂
αVby

∣∣∣∣
≤ µC

(
δ,

1

hmin
, ε |ζ|W 1,∞ , β |b|W 2,∞

)
||∂αUµ||22 + δ

∣∣∣∣∣∣∇µX,z∂αUµ
∣∣∣∣∣∣2

2

≤ C
(
δ,

1

hmin
, ε |ζ|W 1,∞ , β |b|W 2,∞

) ∣∣∣∣∣∣∇µX,zUµ
∣∣∣∣∣∣2
Hk−1

+ δ
∣∣∣∣∣∣∇µX,z∂αUµ

∣∣∣∣∣∣2
2
,

where δ > 0 is small enough and where we use the following Lemma.

Lemma 2.12. Let ζ, b ∈ W 1,∞(Rd) , such that Condition (21) is satisfied. Then, for
all u ∈ H1 (S) and δ > 0,

|u|22 + |ub|22 ≤ C
(
δ,

1

hmin
, ε |ζ|W 1,∞ , β |b|W 1,∞

)
||u||22 + δ ||∂zu||22 .

Furthermore, using Lemma A.3 and the previous Lemma, we get

|I2| ≤ Cµβ |∇b|Hk+1

∣∣Uµ
b

∣∣
Hk

∣∣∂αUµ
b

∣∣
2

≤ µC
(
δ,

1

hmin
, ε |ζ|W 1,∞ , β |b|W 1,∞ , β |∇b|Hk+1

) ∣∣∣∣∣∣∇µX,zUµ
∣∣∣∣∣∣2
Hk−1

+ δ
∣∣∣∣∣∣∇µX,z∂αUµ

∣∣∣∣∣∣2
2
.

For the surface contribution, we can do the same thing as in Proposition 3.12 and
Proposition 5.8 in [8], using the previous Lemma to control ∂αw. Finally, for the other
terms, the main idea is the following Lemma (which is a small adaptation of Lemma
3.13 and Lemma 5.6 in [8]).

Lemma 2.13. Let ψ̃ the unique solution of ∆ψ̃ = ω · Nµ in Ḣ1(Rd). Under the as-
sumptions of the Theorem 2.8, we have the following estimate∣∣∣P∇⊥ψ̃∣∣∣

Hk
≤MN

(
||ω||Hk,0 +

∣∣∣∣ΛkP (
ωb ·Nµ

b

)∣∣∣∣
2

)
.

Gathering the previous estimates with the estimate without the bottom contribution in
Proposition 5.8 in [8], we get

||∂α∇µUµ||2≤µMN

|Pψ|H1+
∑

1<|α|≤k+1

∣∣Pψ(α)

∣∣+||ω||Hk,0+

∣∣∣∣ΛkP (ωb ·Nµ
b )

∣∣∣∣
2

+MN

∣∣∣∣∣∣Λk−1∇µX,zUµ
∣∣∣∣∣∣
2
,

and the inequality follows by a finite induction on k. If l = 1, we can adapt the proof of
Corollary 3.14 in [8] easily.
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Remark 2.14. Notice that for k ≥ 2, we have

∣∣∣∣ΛkP (
ωb ·Nµ

b

)∣∣∣∣
2

≤ C
(

1

hmin
, µmax, β |∇b|Hk+1

)(
||ω||Hk,1 +

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣
2

)
,

thanks to Lemma A.5, Lemma 2.9 and Lemma A.4.

2.4 Time derivatives and few remarks about the good unknown

This part is devoted to recall and adapt some results in [8]. Unlike the previous Propo-
sitions, adding a non flat bottom is not painful. That is why we do not give proofs. We
refer to section 3.5 and 3.6 in [8] for the details. Firstly, in order to obtain an energy
estimate of the Castro-Lannes water waves formulation, we need to control ∂tU

µ. This
is the purpose of the following result.

Proposition 2.15. Let T > 0, ζ ∈ C1
(
[0, T ],W 2,∞ (Rd)), b ∈ W 2,∞ (Rd) such that

(21) is satisfied for 0 ≤ t ≤ T , ψ ∈ C1
(

[0, T ], Ḣ
3
2

(
Rd
))

and ω ∈ C1
(

[0, T ], L2 (S)d+1
)

such that ∇µ,σX,z · ω = 0 for 0 ≤ t ≤ T . Then,

∂t (Uσ,µ[εζ, βb] (ψ, ω)) = Uσ,µ[εζ, βb]
(
∂tψ − εw∂tζ + ε

√
µ
∇
∆
·
(
ωh
⊥∂tζ

)
, ∂σt ω

)
+ ∂tσ∂

σ
z (Uµ,σ[εζ, βb] (ψ, ω)) .

Furthermore, for N ≥ 5, Uµ = Uσ,µ[εζ, βb] satisfies

√
µ ||∂tUµ||2 +

∣∣∣∣∣∣∂t∇µX,zUµ
∣∣∣∣∣∣
HN−2,0

≤ µmax (MN , ε |∂tζ|HN−1)×(
|P∂tψ|H1 +

∑
1<|α|≤N−1

∣∣P∂tψ(α)

∣∣
2

+ ||∂tω||HN−2,0 +

∣∣∣∣ΛN−2

P

(
∂tωb ·Nµ

b

)∣∣∣∣
2

+ |Pψ|H1 +
∑

1<|α|≤N

∣∣Pψ(α)

∣∣
2

+ ||ω||HN−1,1 +

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣
2

)
.

Secondly, in the context of water waves, the Alinhac’s good unknowns play a crucial role.
N. Masmoudi and F. Rousset remarked in [22] that the Alinhac’s good unknown Uµ

(α)

is almost incompressible and A. Castro and D. Lannes showed that the curlσ,µ of Uµ
(α)

is also well controlled. This is the purpose of the following Proposition. We recall that
Uµ

(α) is defined in (43).

Proposition 2.16. Let N ≥ 5, ζ ∈ HN (Rd), b ∈ L∞ ∩ ḢN+1(Rd) such that Condition
(21) is satisfied and ω ∈ HN−1(S) such that ∇σ,µ · ω = 0. Then if we denote by
Uµ = Uµ,σ[εζ, βb], we have for 1 ≤ |α| ≤ N ,
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∣∣∣∣∣∣∇σ,µX,z ·U
µ
(α)

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∇σ,µX,z ×Uµ

(α) − µ∂
αω
∣∣∣∣∣∣

2

≤ µ |(εζ, βb)|HN MN

|Pψ|H1+
∑

1<|α′|≤|α|

∣∣∣Pψ(α′ )

∣∣∣
2
+ ||ω||Hmax(|α|−1,1)+

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣
2

,
and

∣∣Pψ(α)

∣∣
2
≤MN

|Pψ|H3 +
1
√
µ

∑
1<|α′|≤|α|−1

∣∣∣∣∣∣∇XUµ
(α′)

∣∣∣∣∣∣
2

+ ||ω||HN−1 +

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣
2

 .

Furthermore, we can control |Pψ|H3 by Uµ and ω.

Proposition 2.17. Let N ≥ 5, ζ ∈ HN (Rd), b ∈ L∞ ∩ ḢN+1(Rd) such that Condition
(21) is satisfied and ω ∈ H2,1(S) such that ∇σ,µ · ω = 0. Then,

|Pψ|H3 ≤MN

(
1
√
µ

∣∣∣∣Λ3Uσ,µ[εζ, βb] (ψ, ω)
∣∣∣∣

2
+ ||ω||H2,1 +

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣
2

)
.

Proof. The proof is a small adaptation of Lemma 3.23 in [8].

Finally, we give a result that is useful for the energy estimate. Since the proof is a
little different to Corollary 3.21 in [8], we give it. Notice that the main difference with
Corollary 3.21 in [8] is the fact that we do not have a flat bottom.

Proposition 2.18. Let N ≥ 5, ζ ∈ HN (Rd), b ∈ L∞ ∩ ḢN+1(Rd) and ω ∈ HN−1(S)
such that ∇σ,µ · ω = 0. Then, for k = x, y, |γ| ≤ N − 1, α such that ∂α = ∂k∂

γ and ϕ ∈
H

1
2 (Rd), we have

(
ϕ,

1

µ
∂kU

µ
(γ)·N

µ

)
≤MN

|Pψ|H1+
∑

1<|α′ |≤|α|

∣∣∣Pψ(α′ )

∣∣∣
2
+||ω||H|α|−1+

∣∣∣∣1P (ωb ·Nµ)

∣∣∣∣
2

×
[
|Pϕ|2 +

∣∣∣∣∣ 1√
1 +
√
µ|D|

ϕ

∣∣∣∣∣
2

]
,

where we denote by Uµ = Uσ,µ[εζ, βb].

Proof. Notice that when γ 6= 0,

∂kU
µ
(γ) = Uµ

(α) − ∂
γσ∂k∂

σ
z Uµ.

Then, using Lemma 2.9, it is easy to check that
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(
ϕ, ∂γσ∂k∂

σ
z Uµ ·Nµ

)
≤MN

∣∣∣∣∣ 1√
1 +
√
µ|D|

ϕ

∣∣∣∣∣
2

∣∣∣∣∣∣∇µX,zUµ
∣∣∣∣∣∣
H2
.

Furthermore, using the Green identity we get

(
ϕ,Uµ

(α) ·N
µ
)
=

∫
S
(1 + ∂zσ)ϕ†∇σ,µX,z ·U

µ
(α)+

∫
S
(1 + ∂zσ) Uµ

(α) ·∇
σ,µ
X,zϕ

†+
(
ϕ†b,
(

Uµ
(α)

)
b
·Nµ

b

)
,

where ϕ† = χ
(
z
√
µ|D|

)
ϕ and χ is an even positive compactly supported function equal

to 1 near 0. Then, using the fact that Uµ
b ·N

µ
b = 0 and the trace Lemma, we get

(
ϕ†b ,

(
Uµ

(α)

)
b
·Nµ

b

)
=
(
χ(
√
µ|D|)ϕ , ∂αUµ

b ·N
µ
b − β∂

αb (∂σz Uµ)b ·N
µ
b

)
=
(
χ(
√
µ|D|)ϕ , µβ [∇b, ∂α] ·Vb − β∂αb (∂σz Uµ)b ·N

µ
b

)
≤MN (

√
µ ||Uµ||HN + ||Uµ||H2,2) |χ(

√
µ|D|)ϕ|2 .

Therefore, using Proposition 2.16, Theorem 2.11 and the following Lemma (Lemma 2.20
and Lemma 2.34 in [19]) we get the control.

Lemma 2.19. Let ϕ ∈ H
1
2 (Rd) and χ an even positive compactly supported function

equal to 1 near 0. Then,

||χ (z
√
µ|D|)ϕ||2 ≤ C

∣∣∣∣∣ 1√
1 +
√
µ|D|

ϕ

∣∣∣∣∣
2

and
∣∣∣∣∣∣∇µX,z (χ (z

√
µ|D|)ϕ)

∣∣∣∣∣∣
2
≤ C√µ |Pϕ|2 .

3 Well-posedness of the water waves equations

3.1 Framework

In this section, we prove a local well-posedness result of the water waves equations. We
improve the result of [8] by adding a non flat bottom, a non constant pressure at the
surface and a Coriolis forcing. In order to work on a fixed domain, we seek a system of
3 equations on ζ, ψ and ω = ω ◦ Σ. We keep the first and the second equations of the
Castro-Lannes formulation (19). It is easy to check that ω satisfies

∂σt ω +
ε

µ

(
Uµ · ∇σ,µX,z

)
ω=

ε

µ

(
ω · ∇σ,µX,z

)
Uµ +

ε

µRo
∂σz Uµ, (44)

where Uµ = Uσ,µ[εζ, βb]. Then, in the following the water waves equations will be the
system
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

∂tζ −
1

µ
Uµ ·Nµ = 0,

∂tψ+ζ+
ε

2

∣∣∣Uµ
�

∣∣∣2− ε

2µ

(
1 +ε2µ |∇ζ|2

)
w2+ε

∇
∆
·
[(
ω ·Nµ +

1

Ro

)
V⊥
]

= −P,

∂σt ω +
ε

µ

(
Uµ · ∇σ,µX,z

)
ω=

ε

µ

(
ω · ∇σ,µX,z

)
Uµ +

ε

µRo
∂σz Uµ.

(45)

The following quantity is the energy that we will use to get the local wellposedness

EN (ζ, ψ, ω) =
1

2
|ζ|2HN +

1

2
|Pψ|2H3 +

1

2

∑
1≤|α|≤N

∣∣Pψ(α)

∣∣2
2
+

1

2
||ω||2HN−1 +

1

2

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣2
2

,

where we recall that ψ(α) is given by (42). For T ≥ 0, we also introduce the energy space

ENT =
{

(ζ, ψ, ω) ∈ C
(

[0, T ], H2(Rd)× Ḣ2(Rd)×H2(S)
)
, EN(ζ, ψ, ω) ∈ L∞([0, T ])

}
.

We also recall that MN is defined in (23). We keep the organization of the section 4 in
[8]. First, we give an a priori estimate for the vorticity. Then, we explain briefly how we
can quasilinearize the system and how we obtain a priori estimates for the full system.
The last part of this section is devoted to the proof of the main result.

3.2 A priori estimate for the vorticity

In this part, we give a priori estimate for the straightened equation of the vorticity.

Proposition 3.1. Let N ≥ 5, T > 0, b ∈ L∞ ∩ ḢN+1(Rd)and (ζ, ψ, ω) ∈ ENT such that
(44) and Condition (21) hold on [0, T ]. We also assume that on [0, T ]

∂tζ −
1

µ
Uσ,µ[εζ, βb] ·Nµ = 0.

Then,

d

dt

(
||ω||2HN−1 +

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣2
2

)
≤MN

(
εEN(ζ, ψ, ω)

3
2 + max

(
ε,

ε

Ro

)
EN(ζ, ψ, ω)

)
.

Proof. We denote Uσ,µ[εζ, βb] = Uµ =

(√
µV
w

)
. We can reformulate Equation (44) as

∂tω + ε (V · ∇X)ω +
ε

µ
a∂zω =

ε

µ

(
ω · ∇σ,µX,z

)
Uµ +

ε

µRo
∂σz Uµ,

where

a =
1

1 + ∂zσ

(
Uµ ·

(
−√µ∇Xσ

1

)
− (z + 1)Uµ ·Nµ

)
.
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Notice that a = ab = 0. Then, we get

∂t ||ω||22 = ε

∫
S

(
∇X ·V +

1

µ
∂za

)
ω2 +

2

µ

(
ω · ∇σ,µX,z

)
Uµ · ω +

1

Ro
∂σz Uµ · ω,

and

∂t ||ω||22 ≤
ε

µ
C

(
1

hmin
, ε |ζ|W 1,∞ , β |b|W 1,∞

)([∣∣∣∣∣∣∇µX,zUµ
∣∣∣∣∣∣
∞
+
√
µ ||Uµ||∞

]
||ω||22

+
1

Ro

∣∣∣∣∣∣∇µX,zUµ
∣∣∣∣∣∣
∞
||ω||2

)
,

where we use the fact that

|Uµ ·Nµ|L∞ ≤ C (ε |ζ|W 1,∞ , β |b|W 1,∞) (||∂zUµ||∞ +
√
µ ||Uµ||∞) .

The estimate for the L2-norm of ω follows thanks to Theorem 2.8, Theorem 2.11 and
Remark 2.14. For the high order estimates, we differentiate Equation (44) and we easily
obtain the control thanks to Theorem 2.11 and Remark 2.14 (see the proof of Proposition
4.1 in [8]). Finally, taking the trace at the bottom of the vorticity equation in System
(19), we get the following equation for ωb ·Nµ

b ,

∂t
(
ωb ·Nµ

b

)
+ ε∇ ·

([
ωb ·Nµ

b +
1

Ro

]
Vb

)
= 0, (46)

and then,

∂t

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣2
2

≤ 2ε

∣∣∣∣√1 +
√
µ|D|

([
ωb ·Nµ

b +
1

Ro

]
Vb

)∣∣∣∣
2

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣
2

.

The control follows easily thanks to and Lemma 2.9, Theorem 2.8, Theorem 2.11 and
Remark 2.14.

Remark 3.2. Notice that we can also take the trace at the surface of the vorticity
equation and we obtain a transport equation for ω ·Nµ,

∂t (ω ·Nµ) + ε∇ ·
([
ω ·Nµ +

1

Ro

]
V

)
= 0. (47)

3.3 Quasilinearization and a priori estimates

In this part, we quasilinearize the system (19). We introduce the Rayleigh-Taylor coef-
ficient

a := a[εζ, βb](ψ, ω) = 1 + ε (∂t + εV[εζ, βb](ψ, ω) · ∇) w[εζ, βb](ψ, ω). (48)
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It is well-known that the positivity of this quantity is essential for the wellposedness
of the water waves equations (see for instance Remark 4.17 in [19] or [15]). Thanks to
Equation (12), we can easily adapt Part 4.3.5 in [19] and check that the positivity of a
is equivalent to the classical Rayleigh-Taylor criterion ([29])

inf
Rd

(
−∂zP|z=εζ

)
> 0,

where we recall that P is the pressure in the fluid domain. We can now give a quasilin-
earization of (45). We recall that the notation Uµ

(α) is defined in (43) and ψ(α) is defined

in (42).

Proposition 3.3. Let N ≥ 5, T > 0, b ∈ L∞ ∩ ḢN+1(Rd), P ∈ L∞t
(
R+; ḢN+1

X

(
Rd
))

and (ζ, ψ, ω) ∈ ENT solution of the system (45) such that (ζ, b) satisfy Condition (21) on
[0, T ]. Then, for α, γ ∈ Nd and for k ∈ {x, y} such that ∂α = ∂k∂

γ and |γ| ≤ N − 1, we
have the following quasilinearization

(∂t + εV · ∇) ∂αζ − 1

µ
∂kU

µ
(γ) ·N

µ = R1
α,

(∂t + εV · ∇)
(

Uµ
(γ)� · ek

)
+ a∂αζ = −∂αP +R2

α,

(49)

where

∣∣R1
α

∣∣
2
+
∣∣R2

α

∣∣
2
+
∣∣PR2

α

∣∣
2
≤MN

(
max

(
ε,

ε

Ro

)
EN(ζ, ψ, ω) +

ε

Ro

√
EN(ζ, ψ, ω)

)
. (50)

Before proving this result, we introduce the following notation. For α ∈ Nd and f, g ∈
H |α|−1(Rd), we define the symmetric commutator

[∂α, f, g] = ∂α (fg)− g∂αf − f∂αg.

Proof. Firstly, we apply ∂α to the first equation of (45)

∂t∂
αζ + εV · ∇∂αζ + ε∂αV · ∇ζ − 1

µ
∂αw + ε [∂α,V,∇ζ] = 0.

Using Theorem 2.11 and the trace Lemma 2.12, we get the first equality. For the second
equality we get, after applying ∂k to the second equation of (19),

∂t∂kψ+∂kζ+εV ·
(
(∂k∇ψ−εw∇∂kζ)+∂k∇⊥ψ̃

)
− ε

µ
w∂k (Uµ·Nµ)

− ε∂k
∇⊥

∆
·
((
ω ·Nµ +

1

Ro

)
V

)
= −∂kP.

Then, applying ∂γ and using Lemma 4.3 in [8] (we can easily adapt it thanks to Theorem
2.11 and Lemma 2.13) we get
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∂t∂
αψ + ∂αζ + εV ·

(
(∂α∇ψ−εw∇∂αζ)+∂α∇⊥ψ̃

)
− ε

µ
w∂α (Uµ·Nµ)− ε∂α∇

⊥

∆
·
((
ω ·Nµ +

1

Ro

)
V

)
= −∂αP + R̃2

α,

where R̃2
α is controlled ∣∣∣R̃2

α

∣∣∣
2

+
∣∣∣PR̃2

α

∣∣∣
2
≤ εMNEN(ζ, ψ, ω) . (51)

Using the first equation of (19) and the fact that ∆ψ̃ = ω ·Nµ, we obtain

∂tψ(α)+a∂αζ+εV · ∇ψ(α)+
ε

Ro
∂α
∇⊥

∆
·V+∂αP = ε∂α

∇⊥

∆
· (ω ·NµV)

− εV · ∇⊥∂αψ̃ + R̃2
α

= ε
∑

k∈{1,2}

(−1)k+1

[
∂α
∂k
∆
,V 3−k

]
(ω ·Nµ)

+ R̃2
α

:= R̃3
α + R̃2

α,

where ∂1 = ∂x and ∂2 = ∂y. Then, using Theorem 3 in [18], Lemma A.1 and Lemma 2.9
we get

∣∣∣R̃3
α

∣∣∣
2

+
∣∣∣PR̃3

α

∣∣∣
2
≤ εMN ||V||HN,1 ||ω||HN−1,1 + ε

∣∣∣∣P∇⊥∆ · (ω ·Nµ∂αV)

∣∣∣∣
2

.

Furthermore,

∣∣∣∣P∇⊥∆ · (ω ·Nµ∂αV)

∣∣∣∣
2

≤

∣∣∣∣∣ 1√
1 +
√
µ|D|

(ω ·Nµ∂αV)

∣∣∣∣∣
2

,

≤

∣∣∣∣∣ 1√
1 +
√
µ|D|

(∂k (ω ·Nµ) ∂γV)

∣∣∣∣∣
2

+ |P (ω ·Nµ∂γV)|2 ,

≤ C (ε |ζ|HN ) |ω|HN−2 (|V|HN−1 + |P∂γV|2) ,

where we use Lemma A.2. The first term is controlled thanks to the trace Lemma 2.12
and Theorem 2.11. For the second term, we have

∂γV = ∇∂γψ − εw∇∂γζ − ε∂γw∇ζ +∇⊥∂γψ̃ − ε [∂γ ,w,∇ζ] ,
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and the control follows from Lemma A.1, Lemma 2.9, Theorem 2.11 and Lemma 2.13.
Then, we obtain

∂tψ(α) + a∂αζ + εV · ∇ψ(α) +
ε

Ro
∂α
∇⊥

∆
·V + ∂αP =

˜̃
R2
α,

where
˜̃
R2
α satisfied also the estimate (51). Finally, we can adapt Lemma 4.4 in [8] thanks

to Remark 3.2, Theorem 2.11 and Proposition 2.15 and we get

∂tψ(α) = ∂t

(
Uµ

(γ)� · ek
)

+ R̃α,

where R̃α satisfies the same estimate as R2 in (50). The third equality is a direct
consequence of Proposition 3.1.

In order to establish an a priori estimate we need to control the Rayleigh-Taylor coeffi-
cient a. The following Proposition is adapted from Proposition 2.10 in [23].

Proposition 3.4. Let T > 0, N ≥ 5, (ζ, ψ, ω) ∈ ENT is a solution of the water waves
equations (45), P ∈ L∞(R+; ḢN+1(Rd)) and b ∈ L∞ ∩ ḢN+1(Rd), such that Condition
(21) is satisfied. We assume also that ε, β,Ro, µ satisfy (22). Then, for all 0 ≤ t ≤ T ,

|a− 1|W 1,∞ ≤ C
(
MN , ε

√
EN(ζ, ψ, ω)

)
ε
√
EN(ζ, ψ, ω) + εMN |∇P |L∞t HN

X
.

Furthermore, if ∂tP ∈ L∞(R+; ḢN (Rd)), then,

|∂ta|L∞ ≤ C
(
MN , |∇P |L∞t HN

X
, ε
√
EN(ζ, ψ, ω)

)
ε
√
EN(ζ, ψ, ω) + εMN |∇P |W 1,∞

t HN
X
.

Proof. Using Proposition 2.15 we get that

a[εζ, βb](ψ, ω) = 1 + ε2V · ∇w + ε∂tζ∂
σ
z w

+ εw[εζ, βb]

(
∂tψ − εw[εζ, βb](ψ, ω)∂tζ + ε

√
µ
∇
∆
·
(
ωh
⊥∂tζ

)
, ∂σt ω

)
.

(52)
Then, using the equations satisfied by (ζ, ψ, ω), Theorems 2.8 and 2.11, Remark 2.14
and standard controls, we easily get the first inequality. The second inequality can be
proved similarly.

We can now establish an a priori estimate for the Castro-Lannes System with a Coriolis
forcing under the positivity on the Rayleigh-Taylor coefficient

∃ amin > 0 , a ≥ amin. (53)
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Theorem 3.5. Let N ≥ 5, T > 0, b ∈ L∞ ∩ ḢN+2(Rd), P ∈ L∞t
(
R+; ḢN+1(Rd)

)
and

(ζ, ψ, ω) ∈ ENT solution of the water waves equations (45) such that (ζ, b) satisfy Con-
dition (21) and a[εζ, βb] (ψ, ω) satisfies (53) on [0, T ]. We assume also that ε, β,Ro, µ
satisfy (22). Then, for all t ∈ [0, T ],

d

dt
EN(ζ, ψ, ω) ≤C

(
µmax,

1

hmin
,ε
√
EN(ζ, ψ, ω),β |∇b|HN+1 ,β |b|L∞ , |∇P |W 1,∞

t HN
X

)
×(

εEN(ζ, ψ, ω)
3
2 + max

(
ε, β,

ε

Ro

)
EN(ζ, ψ, ω) + |∇P |L∞

t HN
X

√
EN(ζ, ψ, ω)

)
.

(54)

Proof. Compared to [8], we have here a non flat bottom, a Coriolis forcing and a non
constant pressure. We focus on these terms. Inspired by [8] we can symmetrize the
Castro-Lannes system. We define a modified energy

FN (ψ, ζ, ω) =
1

2

(
||ω||2HN−1 +

∣∣∣∣ 1

P

(
ωb ·Nµ

b

)∣∣∣∣2
2

+
∑
|α|≤3

|∂αζ|22 +
1

µ

∫
S

(1 + ∂zσ) |∂αUµ|2

+
∑

k=x,y,1≤|γ|≤N−1

(a∂k∂
γζ, ∂k∂

γζ) +
1

µ

∫
S

(1 + ∂zσ)
∣∣∣∂kUµ

(γ)

∣∣∣2 ).
(55)

From Proposition 2.16 and Proposition 2.17 we get

EN(ψ, ζ, ω) ≤ C
(

1

amin
,MN

)
FN(ψ, ζ, ω) ,

and from Theorem 2.8, Theorem 2.11, Remark 2.14 and Proposition 3.4 we obtain that

FN(ψ, ζ, ω) ≤ C
(

1

hmin
, β |b|L∞ , β |∇b|HN , |∇P |L∞

t HN
X
, ε
√
EN(ψ, ζ, ω)

)
EN(ψ, ζ, ω) .

Hence, in the following we estimate d
dtF

N (ψ, ζ, ω). We already did the work for the
vorticity in Proposition 3.1. In the following R will be a remainder whose exact value
has no importance and satisfying

|R|2 ≤ C
(

1

hmin
, β |b|L∞ , β |∇b|HN+1 , |∇P |W 1,∞

t HN
X
, ε
√
EN(ψ, ζ, ω)

)
EN(ψ, ζ, ω). (56)

We start by the low order terms. Let α ∈ Nd, |α| ≤ 3. We apply ∂α to the first equation
of System (45) and we multiply it by ζ. Then, we apply ∂α to the second equation and
we multiply it by 1

µUµ · Nµ. By summing these two equations, we obtain, thanks to
Theorem 2.8, Theorem 2.11, Remark 2.14 and the trace Lemma,
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1

2
∂t (∂αζ, ∂αζ) +

(
∂t∂

αψ,
1

µ
∂αUµ ·Nµ

)
+

ε

Ro

(
∇
∆
· ∂αV⊥,

1

µ
∂αUµ ·Nµ

)
+

(
∂αP,

1

µ
∂αUµ ·Nµ

)
≤ ε |R|2 .

(57)

Furthermore, using again the same Propositions as before, we get

ε

Ro

(
∇
∆
·∂αV⊥,

1

µ
∂αUµ ·Nµ

)
+

(
∂αP,

1

µ
∂αUµ ·Nµ

)
≤ ε

Ro
|R|2 +MN |∇P |L∞

t HN
X

√
EN (ψ, ζ, ω).

Then, we have to link (∂t∂
αψ, ∂αUµ ·Nµ) to ∂t

∫
S (1 + ∂zσ) |∂αUµ|2. Remarking that

ψ = φ, where φ satisfies {
∇µX,z · P (Σ)∇µX,zφ = 0 in S,
φ|z=0 = ψ, ez · P (Σ)∇µφ|z=−1 = 0,

(58)

we get thanks to Green’s identity

(
∂t∂

αψ,
1

µ
∂αUµ ·Nµ

)
=

1

µ

∫
S

(1 + ∂zσ)∇σ,µX,z (∂t∂
αφ) · ∂αUµ

+
1

µ

∫
S

(1 + ∂zσ) ∂α∂tφ∇σ,µX,z · ∂
αUµ +

(
∂t∂

αφb,
1

µ
∂αUµ

b ·N
µ
b

)
.

Then, notice that ∂k = ∂σk + ∂kσ∂
σ
z for k ∈ {t, x, y} and ∂σk and ∇σ,µX,z commute. We

differentiate Equation (58) with respect to t and we obtain thanks to Theorems 2.8, 2.11,
Proposition 2.15 and Lemma 2.38 in [19] (irrotational theory),(

∂t∂
αψ,

1

µ
∂αUµ ·Nµ

)
=

1

µ

∫
S
(1 + ∂zσ) ∂σt ∂

σ,α∇σ,µX,zφ · ∂
αUµ

+

(
∂t∂

αφb,
1

µ
∂αUµ

b ·N
µ
b

)
+ max(ε, β)R.

Using the fact that wb = µβ∇b ·Vb, we get(
∂t∂

αφb,
1

µ
∂αUµ

b ·N
µ
b

)
≤ βMN |∂t∂αφb|

√
EN (ψ, ζ, ω).

Then, by the trace Lemma, we finally obtain(
∂t∂

αφb,
1

µ
∂αUµ

b ·N
µ
b

)
≤ β |R|2 .

Furthermore, remarking that Uµ = ∇σ,µX,zφ + Uσ,µ[εζ, βb] (0, ω), we obtain, thanks to
Proposition 2.15, Theorem 2.8 and Theorem 2.11,
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(
∂t∂

αψ,
1

µ
∂αUµ ·Nµ

)
=

1

µ

∫
S

(1 + ∂zσ) ∂t∂
αUµ · ∂αUµ + max

(
ε, β,

ε

Ro

)
R.

Using the following identity

∂t

∫
S

(1 + ∂zσ)fg =

∫
S

(1 + ∂zσ)∂σt fg +

∫
S

(1 + ∂zσ)f∂σt g +

∫
Rd
ε∂tζfg, (59)

we obtain that

1

µ
∂t

∫
S
(1 + ∂zσ)|∂αUµ|2≤ max

(
ε, β,

ε

Ro

)
|R|2 +MN|∇P |L∞t HN

X

√
EN (ψ, ζ, ω).

To control the high order terms of FN (ψ, ζ, ω) we adapt Step 2 in Proposition 4.5 in
[19]. Thanks to Proposition 3.3, we have

(∂t + εV · ∇) ∂αζ − 1

µ
∂kU

µ
(γ) ·N

µ = R1
α,

(∂t + εV · ∇)
(

Uµ
(γ)� · ek

)
+ a∂αζ = −∂αP +R2

α.

Then, we multiply the first equation by a∂αζ and the second by 1
µ∂kU

µ
(γ) · N

µ and we

integrate over Rd. Then, using Propositions 2.8, 2.18 and 3.4,

1

2
∂t (a∂αζ, ∂ζ) +

(
(∂t + εV · ∇)

(
Uµ

(γ)� · ek
)
,

1

µ
∂kUµ

(γ) ·N
µ

)
≤ εEN(ψ, ζ, ω)

3
2

+ max
(
ε,

ε

Ro

)
|R|2 +MN |∇P |L∞

t HN
X

√
EN(ψ, ζ, ω).

Then, we remark that

(∂t + εV · ∇)
(

Uµ
(γ)� · ek

)
=

(
∂σt +

ε

µ
Uµ · ∇σ,µ

)(
Ub,µ

(γ)� · ek
)
,

where Ub,µ
(γ)� = V(γ) + w(γ)∇σ. Then, we have

(
(∂t + εV · ∇)

(
Uµ

(γ)� · ek
)
,

1

µ
∂kU

µ
(γ) ·N

µ

)
=

1

µ

∫
S

(1 + ∂zσ)

(
∂σt +

ε

µ
Uµ · ∇σ,µ

)(
Ub,µ

(γ)� · ek
)
∇σ,µX,z ·

(
∂kU

µ
(γ)

)
+

1

µ

∫
S

(1 + ∂zσ)∇σ,µX,z

(
∂σt +

ε

µ
Uµ · ∇σ,µ

)(
Ub,µ

(γ)� · ek
)(

∂kU
µ
(γ)

)
+

(
(∂t + εVb · ∇)

(
Ub,µ

(γ)� · ek
)
b
,

1

µ
∂k

(
Uµ

(γ)

)
b
·Nµ

b

)
.
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We focus on the last term (bottom contribution). The two other terms can be controlled
as in Step 2 in Proposition 4.5 in [8]. Using the same computations as in Proposition
2.18, we have

1

µ
∂k

(
Uµ

(γ)

)
b
·Nµ

b = −µβ∇∂αb ·Vb + l.o.t,

where l.o.t stands for lower order terms that can be controlled by the energy. Then,
since b ∈ ḢN+2(Rd), we have by standard controls,∣∣∣∣ 1µ∂k (Uµ

(γ)

)
b
·Nµ

b

∣∣∣∣
H

1
2

≤ β |∇b|HN+1

√
EN (ψ, ζ, ω).

Furthermore, using Propositions 2.8, 2.11 and 2.15 and standard controls, we have∣∣∣(∂t + εVb · ∇)
(

Ub,µ
(γ)� · ek

)
b

∣∣∣
H−

1
2
≤ ε |R|2 +MN

√
EN (ψ, ζ, ω),

and the control follows easily.

3.4 Existence result

We can now establish our existence theorem. Notice that thanks to Equation (52), we
can define the Rayleigh-Taylor coefficient at time t = 0.

Theorem 3.6. Let A > 0, N ≥ 5, b ∈ L∞ ∩ ḢN+2
(
Rd
)
, P ∈ W 1,∞(R+; ḢN+1(Rd)),

(ζ0, ψ0, ω0) ∈ EN0 such that ∇σ,µX,z · ω0 = 0. We suppose that (ε, β, µ,Ro) satisfy (22). We
assume also that

∃hmin, amin > 0 , εζ0 + 1− βb ≥ hmin and a[εζ, βb] (ψ, ω)|t=0 ≥ amin

and

EN(ζ0, ψ0, ω0) + |∇P |L∞t HN
X
≤ A.

Then, there exists T > 0, and a unique solution (ζ, ψ, ω) ∈ ENT to the water waves
equations (45) with initial data (ζ0, ψ0, ω0). Moreover,

T = min

(
T0

max(ε, β, ε
Ro)

,
T0

|∇P |L∞t HN
X

)
,

1

T0
= c1 and sup

t∈[0,T ]
EN (ζ(t), ψ(t), ω(t)) = c2,

with cj = C
(
A,µmax,

1
hmin

, 1
amin

, |b|L∞ , |∇b|HN+1 , |∇P |W 1,∞
t HN

X

)
.

Proof. We do not give the proof. It is very similar to Theorem 4.7 in [8]. We can
regularize the system (45) (see Step 2 of the proof of Theorem 4.7 in [8]) and thanks to
the energy estimate of Theorem 3.5 we get the existence. The uniqueness mainly follows
from a similar proposition to Corollary 3.19 in [8] which shows that the operator Uσ,µ

has a Lipschitz dependence on its coefficients.
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4 The nonlinear shallow water equations

4.1 The context

In this part we justify rigorously the derivation of the nonlinear rotating shallow water
equations from the water waves equations. We recall that, in this paper, we do not
consider fast Coriolis forcing, i.e Ro ≤ ε. The nonlinear shallow water equations (or
Saint Venant equations) is a model used by the mathematical and physical communities
to study the water waves in shallow waters. Coupled with a Coriolis term, we usually
describe shallow waters under the influence of the Coriolis force thanks to it (see for
instance [5], [21] or [31]). But to the best of our knowledge, there is no mathematical
justification of this fact. Without the Coriolis term, many authors mathematically justify
the Saint Venant equations; for the irrotational case, there are, for instance the works of
Iguchi [16] and Alvarez-Samaniego and Lannes ([4]). It is also done in [19]. More recently,
Castro and Lannes proposed a way to justify the Saint-Venant equations without the
irrotational condition([7] and [8]), we address here the case in which the Coriolis force
is present. We denote the depth

h(t,X) = 1 + εζ(t,X)− βb(X), (60)

and the averaged horizontal velocity

V = V[εζ, βb](ψ,ω)(t,X) =
1

h(t,X)

∫ εζ(t,X)

z=−1+βb(X)
V[εζ, βb](ψ,ω)(t,X, z)dz. (61)

The Saint-Venant equations (in the nondimensionalized form) are{
∂tζ +∇ · (hV) = 0,

∂tV + ε
(
V · ∇

)
V +∇ζ + ε

RoV
⊥

= −∇P.
(62)

It is well-known that the shallow water equations are wellposed (see Chapter 6 in [19]
or [4] without the pressure term and the Coriolis forcing and [5]) and that we have the
following Proposition.

Proposition 4.1. Let t0 >
d
2 , s ≥ t0 + 1 and ζ0, b ∈ Hs(Rd), V 0 ∈ Hs(Rd)d.We assume

that Condition (21) is satisfied by (ζ0, b). Assume also that ε, β and Ro satisfy Condition

(22). Then, there exists T > 0 and a unique solution
(
ζ, V

)
∈ C0

([
0, T

max(ε,β)

]
, Hs(Rd)d+1

)
to the Saint-Venant equations (62) with initial data

(
ζ0, V 0

)
. Furthermore, for all t ≤

T
max(ε,β) ,

1

T
= c1 and |ζ(t, ·)|Hs +

∣∣V (t, ·)
∣∣
Hs ≤ c2,

with cj = C
(

1
hmin

, |ζ0|Hs , |b|Hs ,
∣∣V 0

∣∣
Hs

)
.
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4.2 Asymptotic expansion with respect to µ

In this part, we study the dependence of Uµ with respect to µ. The first Proposition
shows that V is linked to Uµ ·Nµ.

Proposition 4.2. Under the assumptions of Theorem 2.8, we have

Uµ ·Nµ = −µ∇ ·
(
hV
)
.

Proof. This proof is similar to Proposition 3.35 in [19]. Consider ϕ smooth and com-
pactly supported in Rd. Then, a simple computation gives

∫
Rd
ϕUµ ·NµdX =

∫
Ω
∇µX,z · (ϕUµ) dXdz,

=

∫
Ω
µ∇ϕ ·VdXdz,

= −µ
∫
Rd
ϕ∇ ·

(∫ εζ

z=−1+βb
V

)
dX.

Then we need an asymptotic expansion with respect to µ of Uµ.

Proposition 4.3. Let t0 >
d
2 , 0 ≤ s ≤ t0, ζ ∈ Ht0+2(Rd), b ∈ L∞ ∩ Ḣt0+2(Rd). Under

the assumptions of Theorem 2.8, we have

Uµ =

(√
µV + µ

(∫ εζ
z ω⊥h −Q

)
+ µ

3
2 Ṽ

µw̃

)
,

with

Q(X) =
1

h(X)

∫ εζ(X)

z′=−1+βb(X)

∫ εζ(X)

s=z′
ω⊥h (X, s),

and

∣∣∣∣∣∣Ṽ ◦ Σ
∣∣∣∣∣∣
Hs,1

+||w̃ ◦ Σ||Hs,1 ≤ C
(

1

hmin
, ε |ζ|Ht0+2 , β |b|L∞ , β |∇b|Ht0+1

)
||V ◦ Σ||Ht0+2,1 .

Proof. This proof is inspired from the computations of Part 2.2 in [7] and Part 5.7.1 [8].
First, using the Previous Proposition, we get that

w = εµ∇ζ ·V− µ∇ ·
(
hV
)
.

Furthermore, using the fact that Uµ is divergence free we have
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∂zw = −µ∇X ·V.

Then, we obtain

w = εµ∇ζ ·V− µ∇ ·
(
hV
)

+ µ

∫ εζ

z
∇XV

= −µ∇X ·
(∫ z

−1+βb
V

)
.

The control of w̃ follows easily. Furthermore, using the ansatz

V = V +
√
µV1, (63)

and plugging it into the orthogonal of the horizontal part of curlµUµ = µω, we get that

∂zV1 =
√
µ∇Xw̃− ω⊥h .

Then, integrating with respect to z the previous equation from z to εζ(X) we get

V1(X, z) =

∫ εζ(X)

s=z
ω⊥h (X, s)ds+ V1(X) + µ

1
2 R(X, z), (64)

where R is a remainder uniformly bounded with respect to µ and

V1 =
V−V
√
µ

.

Integrating Equation (63) with respect to z from −1 + β to εζ we obtain that∫ εζ(X)

z=−1+βb(X)
V1(X, z)dz = 0 , ∀X ∈ Rd.

Then, we integrate Equation (64) with respect to z from −1 + βb to εζ and we get

hV1 = −
∫ εζ

z′=−1+βb

∫ εζ

s=z′
ω⊥h + µ

1
2 R̃,

where R̃ is a remainder uniformly bounded with respect to µ. Plugging the previous
expression into Equation (64), we get the result. The control of the remainders is
straightforward thanks to Lemma 2.9 (see also the comments about the notations of [8]
in Subsection 2.3).

Remark 4.4. Under the assumptions of the previous Proposition, it is easy to check
that

w = −µ∇X ·
(
[1 + z − βb] V

)
+ µ

3
2 w1,
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with

||w1 ◦ Σ||Hs,1 ≤ C
(

1

hmin
, ε |ζ|Ht0+2 , β |b|L∞ , β |∇b|Ht0+1

)
||V ◦ Σ||Ht0+2,1 . (65)

Then, we define the quantity

Q = Q[εζ, βb](ψ,ω)(t,X) =
1

h

∫ εζ

z′=−1+βb

∫ εζ

s=z′
ω⊥h . (66)

The following Proposition shows that Q satisfies the evolution equation

∂tQ + ε
(
V · ∇

)
Q + ε (Q · ∇) V +

ε

Ro
Q⊥ = 0, (67)

up to some small terms.

Proposition 4.5. Let T > 0, t0 >
d
2 , 0 ≤ s ≤ t0, 0 ≤ µ ≤ 1, ζ ∈ C1([0, T ];Ht0+2(Rd)),

b ∈ L∞ ∩ Ḣt0+2(Rd). Let ω,V,w ∈ C1([0, T ];Ht0+2(Rd)). Suppose that we are under
the assumption of Theorem 2.8, that ω satisfies the third equation of the Castro-Lannes
system (19) (the vorticity equation) and that ∂tζ + ∇ ·

(
hV
)

= 0, on [0, T ]. Then Q
satisfies

∂tQ + ε
(
V · ∇

)
Q + ε (Q · ∇) V +

ε

Ro
Q⊥ =

√
µmax

(
ε,

ε

Ro

)
R̃,

and

∣∣∣∣∣∣R̃ ◦ Σ
∣∣∣∣∣∣
Hs,1
≤ C

(
1

hmin
, ε |ζ|Ht0+2 , β |b|L∞ , β |∇b|Ht0+1

)
||V ◦ Σ||Ht0+2,1 .

Proof. This proof is inspired from Subsection 2.3 in [7]. We know that ωh satisfies

∂tωh + ε (V · ∇)ωh +
ε

µ
w∂zωh = ε (ωh · ∇) V +

ε
√
µ

(
ωv +

1

Ro

)
∂zV.

Using Proposition 4.2 and Remark 4.4 and the fact that ωv = ∇⊥ ·V, we get

∂tωh + ε
(
V · ∇

)
ωh − ε∇X ·

(
[1 + z − βb] V

)
∂zωh = ε (ωh · ∇) V− ε

(
∇⊥ ·V +

1

Ro

)
ω⊥h

+
√
µmax

(
ε,

ε

Ro

)
R,

where R◦Σ satisfies the same estimate as w1◦Σ in (65). If we denote Vsh =
∫ εζ
z ω⊥h , doing

the same computations as in Subsection 2.3 [7] and using the fact that ∂tζ+∇·
(
hV
)

= 0,
we get

∂tVsh + ε
(
V · ∇

)
Vsh + ε (Vsh · ∇) V−∇ ·

(
[1 + z − βb] V

)
+

ε

Ro
V⊥sh =

√
µmax

(
ε,

ε

Ro

)∫ εζ

z

R.
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Then, integrating this expression with respect to z and using again the fact that ∂tζ +
∇ ·
(
hV
)

= 0, we get

∂tQ + ε
(
V · ∇

)
Q + ε (Q · ∇) V +

ε

Ro
Q⊥ =

√
µmax

(
ε,

ε

Ro

)∫ εζ

−1+βb

∫ εζ

z
R,

and the result follows easily.

4.3 Rigorous derivation

The purpose of this part is to prove a rigorous derivation of the water waves equations to
the shallow water equations. This part is devoted to the proof of the following Theorem.
We recall that Σ is defined in (39).

Theorem 4.6. Let N ≥ 6, 0 ≤ µ ≤ 1, ε, β,Ro satisfying (22). We assume that we
are under the assumptions of Theorem 3.6. Then, we can define the following quantity
ω0 = ω0 ◦ Σ−1, ω = ω ◦ Σ−1, V0 = V[εζ0, βb](ψ0,ω0), V = V[εζ, βb](ψ,ω), Q0 =
Q[εζ0, βb](ψ0,ω0) and Q = Q[εζ, βb](ψ,ω)and there exists a time T > 0 such that

(i) T has the form

T = min

(
T0

max(ε, β, ε
Ro)

,
T0

|∇P |L∞t HN
X

)
and

1

T0
= c1.

(ii) There exists a unique solution
(
ζSW ,VSW

)
of (62) with initial conditions

(
ζ0,V0

)
on [0, T ].

(iii) There exists a unique solution QSW to Equation (67) on [0, T ].

(iv) There exists a unique solution (ζ, ψ, ω) of (45) with initial conditions (ζ0, ψ0, ω0) on
[0, T ].

(v) The following error estimates hold, for 0 ≤ t ≤ T ,∣∣(ζ,V,√µQ
)
−
(
ζSW ,VSW ,

√
µQSW

)∣∣
L∞([0,t]×Rd)

≤ µ tc2,

and ∣∣V−V +
√
µQ
∣∣
L∞([0,T ]×Rd)

≤ µ c3,

with cj = C
(
A,µmax,

1
hmin

, 1
amin

, |b|L∞ , |∇b|HN+1 , |∇P |W 1,∞
t HN

X

)
.

Remark 4.7. Hence, in shallow waters the rotating Saint-Venant equations are a good
model to approximate the water waves equations under a Coriolis forcing. Furthermore,
we notice that if we start initially with a irrotational flow, at the order µ, the flow stays
irrotational. It means that a Coriolis forcing (not too fast) does not generate a horizontal
vorticity in shallow waters and the assumption of a columnar motion, which is the fact
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that the velocity is horizontal and independent of the vertical variable z, stays valid. It
could be interesting to develop an asymptotic model of the water waves equations at the
order µ2 (Green-Naghdi or Boussinesq models) and study the influence a Coriolis forcing
in these models. It will be done in a future work [24].

Proof. The point (ii) follows from Proposition 4.1 and the point (iv) from Theorem
3.6. Since, Equation (67) is linear, the point (iii) is clear. We only need to show that(
ζ,V

)
satisfy the shallow water equations up to a remainder of order µ. Then, a small

adaptation of Proposition 6.3 in [19] allows us to prove the point (v). First, we know
that

∂tψ+ζ+
ε

2

∣∣∣Uµ
�

∣∣∣2− ε

2µ

(
1 +ε2µ |∇ζ|2

)
w2+ε

∇
∆
·
[(

ω ·Nµ +
1

Ro

)
V⊥
]

= −P,

and

∂t (ω ·Nµ) + ε∇ ·
([
ω ·Nµ +

1

Ro

]
V

)
= 0.

Since Uµ
� = ∇ψ + ∇⊥

∆ (ω ·Nµ), we get that

∂tU
µ
� +∇ζ +

ε

2
∇
∣∣∣Uµ

�

∣∣∣2 − ε

2µ
∇
[(

1 + ε2µ |∇ζ|2
)

w2
]

+ ε

(
ω ·Nµ +

1

Ro

)
V⊥ = −∇P.

Then, using Proposition 4.3 and plugging the fact that Uµ
� = V−√µQ + µR, we get

∂tV + ε
(
V · ∇

)
V +∇ζ+

ε

Ro
V
⊥

+∇P −√µ
(
∂tQ

+ ε
(
V · ∇

)
Q + ε (Q · ∇) V +

ε

Ro
Q⊥
)

= −µ∂tR + R̃,

and using the same idea as Proposition 4.3, it is easy to check that

∣∣∣∣∣∣R̃ ◦ Σ
∣∣∣∣∣∣
H2,1

+ ||∂tR ◦ Σ||H2,1 ≤ C
(

1

hmin
, ε |ζ|H4 , ε |∂tζ|H4 , β |b|L∞ , β |∇b|H3

)
×

(||V ◦ Σ||H4,1 + ||∂tV ◦ Σ||H4,1) .

Using Proposition 4.5, Theorem 3.6, Theorems 2.8 and 2.11 and Remark 2.14, we get
the result .
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A Useful estimates

In this part, we give some classical estimates. See [3], [19] or [18] for the proofs.

Lemma A.1. Let u ∈W 1,∞(Rd) and v ∈ H
1
2 (Rd) . Then,

|√µP (uv)|2 ≤ C (µmax) |u|W 1,∞(Rd)

∣∣∣∣√1 +
√
µ|D|v

∣∣∣∣
2

.

Lemma A.2. Let t0 >
d
2 , u ∈ Ht0+1(Rd) and v ∈ H

1
2 (Rd). Then,

|[P, u] v|2 ≤ C |u|Ht0+1 |v|2 .

Lemma A.3. Let s > d
2 + 1. Then, for f, g ∈ L2

(
Rd
)
,

|[Λs, f ] g|2 ≤ C |f |Hs |g|Hs−1 .

Lemma A.4. Let s, s1, s2 ∈ R such that s1+s2 ≥ 0, s ≤ min(s1, s2) and s < s1+s2− d
2 .

Then, for f ∈ Hs1(Rd) and g ∈ Hs2(Rd), we have fg ∈ Hs(Rd) and

|fg|Hs ≤ C |f |Hs1 |g|Hs2 .

We also give a regularity estimate for functions in H
− 1

2
∗ (Rd).

Lemma A.5. Let s ≥ 0 and u ∈ H−
1
2

∗ (Rd) ∩Hs− 1
2 (Rd). Then u ∈ Hs− 1

2
∗ (Rd) and∣∣∣∣ 1

P
u

∣∣∣∣
Hs

≤
∣∣∣∣ 1

P
u

∣∣∣∣
2

+

∣∣∣∣√1 +
√
µ|D|u

∣∣∣∣
Hs−1

.
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